The Limiting Spectral Measure for the Ensemble of Generalized Real Symmetric Block m-Circulant Matrices

نویسندگان

  • Wentao Xiong
  • Steven J. Miller
  • Murat Koloğlu
چکیده

Given an ensemble of N × N random matrices with independent entries chosen from a nice probability distribution, a natural question is whether the empirical spectral measures of typical matrices converge to some limiting measure as N → ∞. It has been shown that the limiting spectral distribution for the ensemble of real symmetric matrices is a semi-circle, and that the distribution for real symmetric circulant matrices is a Gaussian. As a transition from the general real symmetric matrices to the highly structured circulant matrices, the ensemble of block m-circulant matrices with toroidal diagonals of period m exhibits an eigenvalue density as the product of a Gaussian and a certain even polynomial of degree 2m − 2. This paper generalizes the m-circulant pattern and shows that the limiting spectral distribution is determined by the pattern of the elements within an m-period, depending on not only the frequency with which each element appears, but also the way the elements are arranged. For an arbitrary pattern, the empirical spectral measures converge to some nice probability distribution as N →∞.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Limiting Spectral Measure for Ensembles of Symmetric Block Circulant Matrices

Given an ensemble of N × N random matrices, a natural question to ask is whether or not the empirical spectral measures of typical matrices converge to a limiting spectral measure as N → ∞. While this has been proved for many thin patterned ensembles sitting inside all real symmetric matrices, frequently there is no nice closed form expression for the limiting measure. Further, current theorems...

متن کامل

Distribution of Eigenvalues of Real Symmetric Palindromic Toeplitz Matrices and Circulant Matrices

Consider the ensemble of real symmetric Toeplitz matrices, each independent entry an i.i.d. random variable chosen from a fixed probability distribution p of mean 0, variance 1, and finite higher moments. Previous investigations showed that the limiting spectral measure (the density of normalized eigenvalues) converges weakly and almost surely, independent of p, to a distribution which is almos...

متن کامل

The Spectral Laws of Hermitian Block-matrices with Large Random Blocks

We are going to study the limiting spectral measure of fixed dimensional Hermitian block-matrices with large dimensional Wigner blocks. We are going also to identify the limiting spectral measure when the Hermitian block-structure is Circulant. Using the limiting spectral measure of a Hermitian Circulant block-matrix we will show that the spectral measure of a Wigner matrix with k−weakly depend...

متن کامل

Eigenvectors of block circulant and alternating circulant matrices

The eigenvectors and eigenvalues of block circulant matrices had been found for real symmetric matrices with symmetric submatrices, and for block circulant matrices with circulant submatrices. The eigenvectors are now found for general block circulant matrices, including the Jordan Canonical Form for defective eigenvectors. That analysis is applied to Stephen J. Watson’s alternating circulant m...

متن کامل

An application of the modified Leverrier-Faddeev algorithm to the singular value decomposition of block-circulant matrices and the spectral decomposition of symmetric block- circulant matrices

The Leverrier-Faddeev algorithm, as modified by Gower (1980), is little-known but is useful for deriving the algebraic, rather than numerical, spectral structure of matrices occurring in statistical methodology. An example is given of deriving explicit forms for the singular value decomposition of any block-circulant matrix and the spectral decomposition of any symmetric block-circulant matrix....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011